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Continuous Symmetries of Three-Dimensional
Diffusion Equations
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Lie transformation groups are given which leave the three-dimensional linear
diffusion equation invariant, with and without chemical reactions. We show how
similarity solutions and conserved currents can be obtained with the help of
these groups. We apply these methods to nonlinear three-dimensional diffusion
equations which can be exactly linearized by nonlinear transformations.

1. INTRODUCTION

Lie transformation groups which leave invariant the one-dimensional
diffusion equation du/at =3°u/sx> have been studied by several authors
(Blumen and Cole, 1974; Harrison and Esterbrook, 1971; Steeb, 1978a, b;
Steinberg and Wolf, 1981; Steeb and Strampp, 1982). Continuous symmetry
groups of given field equations are helpful for obtaining similarity solutions
(Blumen and Cole, 1974) and conserved currents (Steinberg and Wolf,
1981; Steeb and Strampp, 1982).

In the present paper we give Lie transformation groups which leave
invariant the three-dimensional diffusion equation

ou u o'u du

= +— 1
at x> ay* 9z’ M

The diffusion constant D, which is assumed to be constant, is included in
the time t according to the transformation ¢ - ¢/ D. Moreover, we show how
the knowledge of the symmetry groups can be used for obtaining similarity
solutions and conserved currents. Since a class of nonlinear diftusion
equations can be transformed via a nonlinear transformation into the linear
diffusion equation we are able to construct similarity solutions and con-
served currents of this class of nonlinear diffusions. This class of nonlinear
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diffusion equations has been studied in one dimension by several authors.
With the help of an example we demonstrate this approach.

In Section 2 we consider for the sake of completeness the one-
dimensional diffusion equation.

In Section 3 the Lie transformation groups and their infinitesimal
generators are given for the three-dimensional diffusion equation which
leave the diffusion equation invariant. Moreover, we study three-
dimensional diffusion equations where chemical reactions are included.

The Lie algebra whi¢h is associated with the infinitesimal generators
is investigated in Section 4.

Similarity solutions are derived in Section 5.

Section 6 is devoted to the diffusion equation and Lie-Backlund trans-
formations. Hete we use the jet bundle formalism. This approach is briefly
desctibed.

Conserved currents of the diffusion equation are studied in Section 7.

Finally, we consider in Section 8 a class of nonlinear diffusion equations
which can be linearized via a nonlinear transformation.

2. ONE-DIMENSIONAL DIFFUSION EQUATION

We briefly describe the one-dimensional diffusion equation and its
symmetry groups. We do not give the symmetry groups, but we give the
infinitesimal generators (vector fields). With the help of a Lie series we can
obtain the symmetry group from the infinitesimal generator. The one-
dimensional diffusion equation du/at = 3°u/ax? is invariant under the fol-
lowing infinitesimal generators:

d d

X=— T=~—

ox at
0 a
V=u—, S=x—+2t—
Ju d ot

(2)

d xu 0

G=t———+—

ax 2 odu

i 3 x ot 9
P=xt—+t"——|—+-)u—
ax dt 4 2/ ou

For the definition of the invariance of a partial differential equation we
refer to Bluman and Cole (1974). In Section 6 we extend this definition.
The vector fields given above form a basis of a non-Abelian Lie algebra.
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The meaning of the generators is as follows: X represents translation in x
and T translation in t. V represents the field scale change and $ the scale
change with respect to x and . G represents the Galilean transformation
and P is associated with the projective transformation. The generators given
above lead via the mapping (Lie series)

(x, t, u) > exp(eK)(x, t, u) (3)

to the Lie transformation groups. ¢ is the group parameter and K the
generator. Lie-Béicklund transformation groups will be studied in the three-
dimensional case.

A vector field which leaves the diffusion equation invariant and leads
to a Lie transformation group has been omitted so far, namely, U =4d/du.
This vector field leads to an infinite hierachy of infinitesimal generators
which leave the diffusion equation invariant. This is due to the fact that the
commutator of two generators of symmetry groups is again a generator of
a symmetry group. For example,

x* 1\ 8
wpe(E) ®
The right-hand side is a generator of a symmetry group. Taking the commu-
tator of the vector field given by the right-hand side of equation (4) and P
we find a further vector field for which the diffusion equation is invariant.
The procedure can be carried out up to infinity. We notice that f(x, t) =
—(x?/4+1/2) is a solution to the diffusion equation. In general, we can
easily formulate the following theorem.

Theorem. Let f(x, t)3/du be a vector field. Assume that f satisfies the
diffusion equation. Then the diffusion equation is invariant under the vector
field f(x, t)8/ou.

We mention that the converse is also true. The proof of the theorem
will be given in Section 6 within the jet bundle formalism. The so-called
diffusion polynomials [called heat polynomials in the literature (Widder,
1975)] can be found as follows. Consider the symmetry generators G and
U. Then the commutators

(G, U]
[GIG, UT] (5)
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and so on yield the diffusion polynomials. By a straightforward calculation
we find

(G, U]=5 =

x;) (©)

x

2

616, un=(5+5) 2
3tx

t6.16.(6, vm=(3+3) &

Thus the first few polynomials are given by
2

WX 3ix x°
2 4

p3(xa t):————{-— (7)

X
pi(x, t)='2": Pz(x t)= 23

As described above the diffusion polynomials are solutions to the diffusion
equation.

3. THREE-DIMENSIONAL CASE

Consider now the three-dimensional case. The three-dimensional
diffusion equation given by equation (1) is invariant under the following
vector fields:

9 3 ] 8
X=— Y=—5 Z=— T==
ax ay o0z ot
)
V=u—, S=x—+y—+z—+2t—
d ax a at
d Xxu 9 d yu 9 d zu 0
Gy=t———"— ,  Gy=t——"—r Gy=t———-— (8
" ex 2 ou 2%y 2 ou ez 2 ou 8)
R ] 3 5_,0 ,0_ .0
=X —_—y—— —_—— ———-’ —_— X
2= Xy Yax’ 255 %a T %x oz
] d ) o (x> y* 22 31\ o
pP= xt—+yt—+zt——+z2——(~—+y+ )
a 9y dz ot 4 4 4 2
With help of the Lie series
(x, 3, 2, t, u) > exp(eK)(x, y, z, 1, u) 9

where K is an infinitesimal generator and £ the group parameter, we obtain
the corresponding transformation group. By a straightforward calculation
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we find
X: x>xte, y—>y, z->2z, t~> 1 U->u
Y: X")x, y—>y+81 Z">Z, t")tg u—->u
Z: X=X, y-=>y z>z+eg, (-1, u->u
T: X=X, vy, z- 2z, t>t+e, u-u
\& X X, Y, z2, t>t, u- ey
S: x>e'x, y->e'x, z->ez -t>e*t, u-u
—te2a—
G]Z x—>x+gt, y=>, 2>z, t_)t, u->ue te?/4—xs/2
24—
Gs: x> X, y>ytet z-z, t->t, Uy e el
G X=X, Y=, z>z+et, to 1, u->ue =2 (10)
X cose sine)[x
R I . ) >z, u>u
¥ —sine cose/ \y
cos e sineg
z —sine cose/ \z
z cose sing\ [z
R;, - . , y->y,u->u
x —sine cos&/ \x
X y z ¢
P: x> - g >
l—et 7 01—t 1~et 1— et
ool (i)
U~>——""736eX e —
(=e)2PL Tq\1=et 1=et 1-et

A further vector field which leaves three-dimensional diffusion equation
invariant is given by U. We have described the properties of this vector
field in Section 2. We can easily extend these properties to the three-
dimensional case. In particular, this means that we find solutions to the
three-dimensional diffusion equation via the commutators (G, U] (i=
1,2,3), [P, U], (G, (G, Ull, and so on.
Let us now study two diffusion equations which include chemical
reactions. The first equation under consideration is given by (Crank, 1975)
du/at=DAu—ku (1)
where D is the diffusion constant which is assumed to be constant, and k
the rate constant of the chemical reaction. A is the three-dimensional Laplace
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operator. The chemical reaction under consideration is given by U -’; S,
where u denotes the concentration of the species U. The species U decays
in the species S. We mention that equation (11) can also be used for
describing the conduction of heat along a wire which loses heat from its
surface at a rate proportional to its temperature. We also have the same
equation when the species U undergoes radioactive decay.

The second equation under consideration is given by

ou/ot = DAu+ ks, exp(—kt) (12)

where the chemical reaction is of the form S f) U. s, denotes the concentra-
tion of the species S at time ¢ =0 and we assume that the concentration of
U is equal to 0 at time ¢ =0. Moreover we assume that the species S does
not diffuse through the medium, i.e., the diffusion constant for this species
is equal to zero. If we assume that the concentration of U is equal to u, at
time f =0, then we must replace sy by 5o+ u.

We may well ask under which transformation groups the partial differ-
ential equations given above are invariant.

Consider now the patial differential equation (11) and the vector fields
given by equation (8). We find that the vector fields

{X, K Zs T; ‘/’ Gh GZs G3’ R12, R23’ R32} (13)

leave the diffusion equation (11) invariant. Equation (1) is no longer
invariant under {S, P}, but the equation (11)

S* =x3/9x+y8/dy +238/3z+2t3/3t —2ktud/ou (14)
and
P*=x13/3x + ytd/dy + ztd/ 9z + t°0/at — ’kud/ou
—(x*/4+y*/4+ 22 /4+3t/2)us/ou (15)
respectively.

The diffusion equation (1) can be transformed with the help of the
transformation

u(x, y, z, t) =u'(x, y, z, 1) exp(—kt) (16)
into the diffusion equation
ou’/at = DAu’ (17)

With the help of this transformation we can also obtain the vector fields
S$* and P* from the vector fields S and P.



Continuous Symmetries of Three-Dimensional Diffusion Equations 243
Consider now the diffusion equation (12). The partial differential
equation is invariant under the vector fields
{X, Y, Z, Rz, Ras, Ry} (18)
Moreover, equation (12) is invariant under
8/t + k exp(—kt)a/ou
[u+ s, exp(—kt)]p/ou
x8/3x+ya/dy+z3/3z+ 213/t + 2ksyt exp(—kt)a/ou
td/9x — x{[u+ s, exp(—kt)]/2}9/0u
t3/3y — y{[u+ s, exp(—kt))/2}3/ou
13/3z — z{[u + s, exp(—kt)]/2}3/ou
X13/9x + yta/av+ztd/dz + t°5/ 0t + kt* exp(—kt )3/ ou
—(X*/4+y*/ 4+ 22 /44 31/2)[u+ 5o exp(—~kt)13/ou

(19)

The diffusion equation (12) can be transformed with the help of the transfor-
mation
u(x, y, z, t) =u'(x, y, z, ) — 5 exp(—kt) (20)

into the diffusion equation ou'/dt = DAu'.

4. THE LIE ALGEBRA OF THE SYMMETRY GENERATORS

Consider now the properties of the vector fields given by equation (8).
By a straightforward calculation we find

[X,PI=G,, [Y,P]=G, [Z P]=G;
[V,P]=0, [S P]=2P
[G,, P1=[G,, P]=[Gs, P]=0
[Ri2, P1=[Ra, P1=[Rs;, P1=0
[5,Gi]=Gi, [S,Gl=G, [5G:]=G;
[Gi,R2]=G,, [G,R5]=0, [G,, Ry]=G, (21)
[Gy, Rix]==Gi,  [Gy,Rul=Gs,  [Gy Ry]=0
[Gs, Ri2]=0,  [Gs, Ry]==Gy,  [Gs5, Ra]=Gy
[G, G)]=[G), G5]1=[G,, G31=0
[S, Ri2]=[S, Ry]=[S, R;;]=0
[V. Gi]=[V, G.]=[V, G;]=0
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Consequently, Abelian Lie algebras are given by
{X: Ya ‘Z’ T}7 {Gh GZ, Gi’u P}a {‘/a Gl’ GZa G3}

{V,P}, {Ri»,P}, {Ry P}, {Ry, P} (22)
{Rl2’ S}y {R23, S}’ {R31’ S}

5. SIMILARITY SOLUTIONS

With the help of the symmetry groups given by equation (9) we are
able to find so-called similarity solutions of the diffusion equation. This
means, we can derive a so-called similarity variable, say, n, which depends
on the time coordinate ¢ and the space coordinates x, y, z. With the help
of this similarity variable n we are now able to reduce the partial differential
equation to an ordinary differential equation, where the independent vari-
able of this ordinary differential equation is the similarity variable . In the
following we demonstrate the approach for two particular cases.

Consider the infinitesimal generators

{Ry3, Z, T+ aV} (23)
where a € R. The vector fields R;,, Z, and T+ aV form a basis of an Abelian
Lie algebra. We mention that we need three vector fields for obtaining an
ordinary differential equation. With each vector field we can eliminate one
independent variable. In the present case there are four independent vari-
ables. For finding the similarity variable and the ordinary differential
equation which can be derived from the infinitesimal generators we need
the corresponding transformation groups and the composition of these
transformation groups.

According to the infinitesimal generators R,,, Z, and T+ aV we find

b cos g, —sin g\ { X
=1 . s Zy = 2o, Iy =1y, Uy =1up
Vi St €¢ COS €, yo
X=X, Y2=Y1 =2zt &, L=1, Uy = Uy (24)

X3 = Xo, Y3=Ya, Z3= 2y, ty=0htes, Uy = u, exp(aes)

The composition of these transformation groups gives the three-parameter
transformation group

(x3) B (cos g, —sin el) (xo) (252)
V3 “\sine, cose Yo
Z3 - ZO+ £y (25b)
ty; = t0+ E3 (25C)

us = ug explas;) (25d)
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In the following we put x; =X, y3=J, z3=2, t=1, and u; = u. We choose
Xo=m (7 =similarity variable), y,= z,=1,=0. Then the above equations
can be solved with respect to ¢,, &,, €3, and n and we find

g, = arctan (X), £,=72, £g4=t (26)
x

The similarity variable n takes the form
n=(x"+y")" 27)
Taking into account the equation (25d) we obtain the ansatz
u(x, y, z, t) = i(n) exp(at) (28)

Inserting this ansatz into the diffusion equation we find an ordinary equation
where the independent variable is given by 1 and the dependent variable
is given by #. By a straightforward calculation we obtain the following
ordinary differential equation:

d*a

1 da

—+———=ail 29
' dn (29)
The resulting ordinary differential equation is of Bessel’s type and can be
solved with the help of Bessel functions.

6. LIE-BACKLUND TRANSFORMATION GROUPS

For further investigations, in particular for obtaining Lie-Bécklund
transformation groups which leave the diffusion equation invariant, we
consider our partial differential equation within the jet bundle formalism
(Johnson, 1962; Olver, 1979; Steeb et al., 1982). Since most physicists are
not familiar with this formalism we give a short review.

First of all let us introduce the notation. A triple (N, o, M) is called
a fibered manifold if M and N are differentiable manifolds and 7: N> M
is a surjective submersion. The so-called base manifold M represents the
independent variables. In most cases in physics M =R* or an open subset
of R*. The manifold N represents the dependent variables (the fields) and
the independent variables. In most cases in physics N will be an open
subset of the Euclidian space R**xR". Now let dim M =m and dim N =
n+m and let (x;, u;) (1=i=m, 1 <j=<n) denote the coordinate function
defined by a fiber chart. Sections of N are defined as smooth maps s: M > N
such that mros = 1, where 1, is the identity map of M. We call the functions
(x;, u;) the fiber coordinates on N, The r-jet bundle J'(N) is given by the
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equivalence classes of sections of N having rth order contact. The coordinate
functions on J'(N) are denoted by (x; ;, w, Uiy - - - » Wi ip...i,), Where

iip,...,e{l,...,m}, je{l,...,n} and I=si=i..si=mu

The quantity u; ; corresponds to the partial derivative of u; with respect
to x; ... x; . The infinite jet bundle is denoted by J(N). Within the jet bundle
formalism a system of partial differential equations of order r is defined to
be a submanifold of J'(N). Consider a system of partial differential
equations of order r

Fv(x,', uj, 0uj/0x,-,.. .,Bruj/axilax,-z...axi')‘—‘o (1/:1,__ .y q) (30)
Within tlie jet bundle formalism we consider the submanifold
F (xla }1, R} ujil...i,) = 0 (31)

and the contact forms

9j = de - Z uji dx,-
i=1

(32)
Oji,..;, = pl ey Z Wi, ik dx;
Consider now the vector field D, defined on J(N) by
d
=—+ -+ Ui 1___+"' 33
0x; Z u] lzl il7--§r"l T gu Ui, i, ( )

The summation on the right-hand side is restricted to 1 <i;<i,<---<i =<
m. D; is sometimes called the operator of total differentiation. Together
with equation (31) we consider all differential consequences D,F, =
0,...,D,D,...F,=0.Let Q=dx; ndx; A" - - A dx, be the volume form on
M. x,, will play the role of the time coordinate.

Definition. The (m—1) form

w= Z Jie(xs w, w0 (a—iz JQ) (34)

defined on J(N) is called a conservation law of equation (30) if (js)*(dw) =0
whenever s: M - N is a solution to equation (30). js is the jet extension of
s up to infinite order. 8/3x; 1Q denotes the contraction.

Another possibility for defining conserved currents is: The (m —~ 1) form
o given above is called a conservation law if dw € J, where J is the differential
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ideal generated by F,, D,F,,...., and the contact forms. We mention that
the first definition is the more general one.
For deriving conserved currents we consider the vector fields

m

Z = Z aia/ax,--i—
i=1

i=

b;a/du; (35)
j=1

7

where a; and b; depend upon (x, u, u;, ...). The corresponding vertical
vector field is given by

Zy= i (bj - § aiuji) i (36)

j=1 auj
We denote by Z, the prolongation of the vector field Zy up to infinite order.

Definition. The system of partial differential equations (30) which is
described within the jet bundle formalism by equ_ation (31) and the contact
forms is called invariant under the vector field Zy if

Lz F,20 (37)
where 2 stands for the restriction to solutions to equation (30).

Again we can give a definition which is not so general, but frequently
used. Here the system of partial differential equations is called invariant if
LzF,eJ, Lz6;¢J,..., where J is the differential ideal generated by F,,
D;F,, and the contact forms.

Assume that the vector field Z, is integrable to the corresponding
group action u - exp(eZy)u. Then, owing to invariance, a solution s: M > N
is carried into a new solution exp(eZy)s.

Theorem. Assume that the system of partial differential equations (30)
is invariant under the vector field Z;. Let w be a conservation law of equation
(30). Then Lz w is also a conservation law of equation (30).

The proofis by straightforward calculation. (cf. also Steeb and Strampp,
1982).

Let us now prove the theorem given in Section 2. The prolongation of
the vector field A= f(x, t)3/du up to second order is given by

af 8 of a8 f a8 Ff o 8 3
acY 8 of 8 9f 8 9f 9 df 8

A= 3T+ (38)
8t du, ox Ju, 0x° Ju. dot° ou, 0X9t AU,
It follows that
- of ¥*f
A - uy)=2-2=0
(ul 8t axz (39)

since f satisfies the diffusion equation.
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7. CONSERVED CURRENTS OF THE DIFFUSION EQUATION

With the help of the theorem described in Section 6 we are able to
derive conserved currents with the help of the infinitesimal generator given
by equation (25). The diffusion equation can be written as

js*(dw)=0 (40)
where

w=udxadyndztu,dindyndz+u,dtndzndx+u, dt adxnady
(41)

Consequently, equation (40) is a conservation law. As a consequence it
follows that

Q(u) =J ; u(x,y,z,t) dxdydz (42)
R

is a conserved quantity. Q is the total amount of the diffusing substance.
Taking the Lie derivative of w with respect to the vector fields given by
equation (8) we can find further conservation laws. The vector fields X, Y,
Z, T, V, Ry,, R,;, and Rj, do not give new conservation laws. In this case
we obtain w or zero by taking the Lie derivative of w with respect to these
vector fields. On the other hand we find a hierarchy of conservation laws
(and therefore a hierarchy of constants of motion) when we consider the
vector fields G,, G,, G;, and P.

Consider now the vector field symmetry generators G, and the differen-
tial form (the conservation law) . By Lie derivative of the differential form
w with respect to the symmetry generator G, we find

Lélw#—?dx/\dy/\dz-—y;—)fdt/\dx/\dy

+(g——2—> dt/\dy/\dz~——y~xdt/\d2/\dx (43)

From this expression it follows that
Pi(u)= J xu(x,y, z,t)dxdydz (44)
Rs

is a conserved quantity. Consequently, for actual calculation of the quantity
P, we can insert the initial distribution ¢(x,y, z) =u(x, y, z, t =0) into
equation (44). For example, if ¢ is an even function with respect to each
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coordinate we find that
I xp(x,y,z)dxdydz=0 (45)
RB

When we calculate the Lie derivative of the differential form Ls e with
respect to G, we find a further conservation law and therefore a constant
of motion. A straightforward calculation yields that

¢ 2
Pz(u)=J (——+x—) u(x,y, 2z t)dxdydz (46)
B\ 2 4

is a conserved quantity. Now we can expand this approach up to infinite
order. P,(u) is given as follows. Let f, be the function

Loz t>=<§—t£;)n- 1 (47)

Then P,(u) is given by

P (u)= f u(x, y, 7, )fu(x, y, 2, 1) dx dy dz (48)
R3

For the vector fields G,, G5, and P we also obtain a hierarchy of conservation
laws.

8. NONLINEAR DIFFUSION EQUATIONS AND LINEARIZATION

Nonlinear diffusion equations arise when we study concentration-
dependent diffusion. The equation under consideration is then

g= div(D(v) grad v) {49)

In this section we study a class of nonlinear diffusion equations and its
connection with the linear diffusion equation. The class of nonlinear
diffusion equations is given in such a manner that there is a transformation
(of course nonlinear) which linearizes the nonlinear diffusion equation. In
the one-dimensional case several authors (Ames, 1965; Kaup, 1980; Bluman
and Kumei, 1980; Munier et al., 1981 ; Ibragimov and Shabat, 1980; Bluman,
1980) have studied the problem of linearizing nonlinear diffusion equations.
In the literature the best known example is the so-called Burgers equation
(Kaup, 1980)

—= =0 (50)
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Inserting the nonlinear transformation

(ou/ax)(x,t)
u(x, t)

o(x, )= =2 Inu(x, )=—2 (51)
0x

into the Burgers equation we find that u satisfies the linear diffusion equation

ou/ot=3"u/ox’.

The transformation given by equation (51) is sometimes called a Bick-
lund transformation since a derivative of u appears on the right-hand side.
The Cauchy initial problem is solved for the linear diffusion equation, i.e.,
find u satisfying 3*u/ax*=9u/at such that u(x, 0) = ¢(x). Therefore with
the help of a nonlinear transformation we can solve the Cauchy problem
for the Burgers equation; but the calculation shows that for the Burgers
equation the initial perturbation must obey a restrictive condition in order
that the solution exist. The Burgers equation (50) can be written in the form
of a conservation law, namely,

v 9 (1 , av
—t—— =y ——] = 2
at ax (2U ax) 0 52)

Since the transformation given by (51) is not invertible we are not able to
find conservation laws of the Burgers equation from conservation laws of
the linear diffusion equation.

Let us assume that the nonlinear transformation which linearizes the
nonlinear diffusion equation is invertible.

Since solutions and conserved currents of the linear diffusion equation
are known we are able to derive solutions and conserved currents of the
nonlinear diffusion equations which are associated with the linear diffusion
equation (1) via nonlinear transformations. In the following we assume that
the quantities x, y, z, ¢, u are given so that they are dimensionless.

Let us now consider the three-dimensional case. First of all we discuss
two examples. Consider first the nonlinear diffusion equation

av [ov\> [ov\® [av\? v &*v v
—=(——) +<—) +<~) +—t—=+- (53)
at ax oy 0z ax~ dy”- az

With the help of the nonlinear transformation
v(x,y,z, t)=Inu(x,y,z1) (54)

the nonlinear equation can be linearized. The transformation is invertible
and we have u(x, y, z, t) = exp[v(x, y, z, t)]. Consequently, we can write the
nonlinear equation as a conservation law, namely,

de” o [ae” 3 [3e” a fae”
S SE O
dt dx \ox oy \ oy dz \ 9z
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Thus we can transform solutions, symmetry generators, and conservation
laws from the linear diffusion equation to the nonlinear diffusion equation.
Let u, and u, be solutions to the linear diffusion equation. Then u; + u, is
also a solution to the linear diffusion equation. Now let v, and v, be solutions
to the nonlinear diffusion (53). We may well ask whether the two solutions
can be combined so that we find a new solution {so-called nonlinear
superposition). With the help of the transformation (54) we can easily find
the nonlinear superposition. Starting from u,+u,=exp(v), u; =exp(v,),
and wu,=exp(v,) we obtain In(u;+u,)=v and therefore v=
In[exp(v,)+ exp(v,)] is a solution to the nonlinear diffusion equation (53).

Another example of a nonlinear diffusion equation which can be
linearized is the following:

v 1[[av\’ [ov\" [ov\'] v v &%
—=——\Z) \3) D) |ttt (56)
ot v L\dx oy ay ax” 9y~ 9dz

The linear diffusion equation can be obtained via the transformation

v(x, y, z, t) = explu(x, y, z, 1)] (57)
Consequently, we can write equation (56) as a conservation law

é(In v):_q_(_M) +i(aln v) +_a_(aln v> (58)
ot ax \ ox oy \ a9y 9z \ 9z

The nonlinear superposition of two solutions v, and v, to the equation (56)

can be found as described above. Starting from u; +u,=1n v, u; =1n v, and

u,=In v, we obtain v=exp(u,+u,) and therefore v=exp(ln v, +1n v,).

Consequently, v = v,v,. Thus if v, and v, are solutions to the equation (56),

then v = v, v, is also a solution to equation (56). Since the nonlinear transfor-

mation is invertible we are able to find symmetry generators of the equation

(56) from the symmetry generators of the linear diffusion equation [equation
(8)].

Let us now generalize the results given above. Consider a smooth

function f of v which is invertible in the region under consideration. Now
we write

af(v) 3 af(v) & af(v) o af(w)_
ot 0x ox oy ay 0z 0z

0 (59)

By a straightforward calculation it follows that

o (25029 (2]
e |~ —F— | — " -] +{— ) +— =0 60
4y f(ax2 ay* 9z’ 7"\ ay az (©0
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where the prime denotes the derivative of f with respect to v. Since f is
invertible, we find that

2 2 2 1 2 2 2
e R CRORCIS
at \dx~ 9y° 9z S L \ax ay dz

The nonlinear diffusion equation (61) can be linearized with the help of
the function f~'. Since we know the solutions, symmetry generators, and
conservation laws of the linear diffusion equation (1) we find with the help
of the function f and ' solutions, symmetry generators and conservation
laws of the nonlinear diffusion equation (61).

A natural question is what happens when we also include derivatives
of v in our transformation. This means the function should depend on u,
u,, u,, u, and therefore we have a Bicklund transformation. The problem

is that in most cases the function f is not invertible.
However, the following extension is possible. Let

Av+f(v)(grad v)*+ a(x, t)grad v+ b(x, t)dv/at =0 (62)

where x = (x,,...,x,)" and a=(ay,..., a,). f, b, and q; are given smooth
functions. With the help of the transformation

v B
u=j' {exp[j f(a)da]} daB {63)

we obtain the linear partial differential equation

Au-+a(x, t) grad u+b(x, t)ou/at=0 (64)
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